
BILT EUR 2018

GR – Ljubljana Exhibition and Convention Centre, Ljubljana
11 – 13 October 2018

Page 1 of 59

Session 1.5 and 2.3

Become a Dynamo Zero Touch Node Developer in
75 Minutes
Thomas Mahon, Bimorph

Class Description
Have you ever thought about coding but never tried because you think you can’t do
it? Are you an experienced Dynamo user but find yourself at the limits of visual
programming? Or maybe you're an IronPython wiz who feels strong-typed languages
are out-of-reach.

If the above resonates then you should attend this lab, because in 75 minutes these
barriers will be broken. You will learn how to develop Zero Touch nodes for Dynamo in
C# and set yourself up on a path to develop relevant and highly-prized skills for 21
Century construction professionals. Hosted by Thomas Mahon, a computational
design/BIM expert and creator of BimorphNodes, one of Dynamo's most popular
packages - you will learn from one of the most experienced developers in the Dynamo
community. By the end of the lab, delegates will be able to apply this knowledge to
their existing workflows, and enter the top tier of developers capable of controlling
Dynamo for Revit without limitation!

Why learn Zero Touch? There are numerous reasons to create Zero Touch nodes in C#:

 Fully integrated in an IDE (Visual Studio), providing IntelliSense and debugging
which make coding easier than any other option

 Speed - Zero Touch nodes execute rapidly making them ideal for complex
problems on large projects

 Full access to the Revit API, Dynamo API and ability to communicate with
external applications

 Code is more secure and easier to protect if IP is a concern

The workshop is delivered through practical exercises covering:

 Zero Touch basics and Visual Studio environment configuration
 Key C# Concepts
 Creating namespaces, classes, methods and properties to understand how

Dynamo consumes Zero Touch libraries

1.5 and 2.3 - Become a Dynamo Zero Touch Node Developer
in 75 Minutes

Thomas Mahon, Bimorph

Page 2 of 59

 Compiling Zero Touch projects and Custom Package creation

About the Speaker:

Thomas is the Founding Director of Bimorph – a Digital Engineering and
software development company based in London which exclusively
supports the Architecture, Engineering, Contractor and Manufacturing
sector globally.

Thomas is a computational design/BIM specialist. With a background in Architecture, he
has worked with leading architectural firms including Foster + Partners and Rogers Stirk
Harbour + Partners on a diverse range of high-profile projects.

He has continued to push the boundaries of digital technology, specializing in
computational design/BIM to pioneer new paradigms for building design and delivery.
His achievements include developing ground-breaking workflow-automation tools for
leading construction companies, using cutting-edge procedural modelling techniques
to deliver geometrically complex buildings, and more recently, developing widely-used
Dynamo Node Packages and Revit add-ins.

1.5 and 2.3 - Become a Dynamo Zero Touch Node Developer
in 75 Minutes

Thomas Mahon, Bimorph

Page 3 of 59

ZERO TOUCH INTRODUCTION
Zero Touch development in Dynamo for Revit provides a simple workflow for writing
custom nodes in C# and importing a compiled library of classes into Dynamo without
the need to configure the software or manually configure the node – it therefore
requires little effort to begin using your program once its compiled, hence the term
‘Zero Touch’.

Writing custom nodes in C# has many advantages over Python; C is a strongly-typed
language which improves type-safety and robustness of code. In addition, it can be
written within powerful IDEs, such as Visual Studio, which aid the developer and enable
the development of programs that would be difficult to achieve using Python and
Dynamo’s text editor. In addition, as programs written in C# have to be compiled
before runtime, they execute quicker than Python, making it an ideal option for projects
that demand a high degree of performance.

The workshop covers the following topics:

1. Visual Studio set-up
2. Environment configuration
3. Core C# Concepts
4. Writing custom nodes:

 HelloWorld (intro)
 Using the Revit API
 Compiling and debugging

1.5 and 2.3 - Become a Dynamo Zero Touch Node Developer
in 75 Minutes

Thomas Mahon, Bimorph

Page 4 of 59

PREREQUISITES
Before beginning the lab, ensure the following software is installed:

1. Revit 2018.3
2. Dynamo 2.0 (http://dynamobim.org/download/)
3. Visual Studio Community 2017 – Use the Visual Studio Installer and select/install

the .NET Desktop Development Workload
(https://visualstudio.microsoft.com/vs/community/)

4. Revit Lookup (https://github.com/jeremytammik/RevitLookup)

1.5 and 2.3 - Become a Dynamo Zero Touch Node Developer
in 75 Minutes

Thomas Mahon, Bimorph

Page 5 of 59

1. VISUAL STUDIO SETUP
Starting a Zero Touch Project in Visual Studio
The following steps demonstrate how easy it is to setup a new Class Library project in
Visual Studio.

Step 1: Create a New Project
Open Visual Studio and create a new project by clicking File > New > Project. In the
dialog window that opens, select Class Library and name the project ZeroTouchNodes
and uncheck the nearby checkboxes. Click the OK button to create the new project:

1.5 and 2.3 - Become a Dynamo Zero Touch Node Developer
in 75 Minutes

Thomas Mahon, Bimorph

Page 6 of 59

Step 2: Tour of the IDE
Referenced from https://docs.microsoft.com/en-us/visualstudio/ide/visual-studio-ide?view=vs-2017
Now the project is setup, its worth taking a high-level visual overview of Visual Studio to
get family with its appearance. The following image shows Visual Studio with an open
project and several key tool windows you'll likely use:

Solution Explorer (top right) lets you view, navigate, and manage your code files.
Solution Explorer can help organize your code by grouping the files into solutions and
projects.

The editor window (center), where you'll likely spend a majority of your time, displays file
contents. This is where you can edit code or design a user interface such as a window
with buttons and text boxes.

1.5 and 2.3 - Become a Dynamo Zero Touch Node Developer
in 75 Minutes

Thomas Mahon, Bimorph

Page 7 of 59

The Output window (bottom center) is where Visual Studio sends notifications such as
debugging and error messages, compiler warnings, publishing status messages, and
more. Each message source has its own tab.

Team Explorer (bottom right) lets you track work items and share code with others using
version control technologies such as Git and Team Foundation Version Control (TFVC).

Step 3: Rename the Class
You have now created your first Visual Studio developer project. You should see a new
class (by default, named Class1.cs) and a new namespace called ZeroTouchNodes.
The next step is to rename the class from the default name to HelloWorld – this will be
the class name of our new custom Zero Touch node.

To rename the class and ensure all references are updated, click on the Class1.cs file in
the Solution Explorer panel, and below, in the Properties panel, enter HelloWorld into
the File Name property. Ensure the class is marked public otherwise it won’t be visible in
the Dynamo when it is imported:

1.5 and 2.3 - Become a Dynamo Zero Touch Node Developer
in 75 Minutes

Thomas Mahon, Bimorph

Page 8 of 59

When you rename a class in this fashion, the following warning message appears. Click
Yes to accept the change:

1.5 and 2.3 - Become a Dynamo Zero Touch Node Developer
in 75 Minutes

Thomas Mahon, Bimorph

Page 9 of 59

2. ENVIRONMENT CONFIGURATION
Step 1 Build Configuration
Once the project is set-up, it needs to be configured to automate actions that aid with
the development of Zero Touch custom node packages. The first step is to associate an
external application to our project for the purposes of debugging and testing. Since
Dynamo is dependent on Revit to operate, the external application needs to be set to
Revit.exe. To do this, click on the Project tab > ZeroTouchNodes Properties, from the
menu. A new panel will open displaying the project properties.

Click on the Build tab on the left-hand side and select x64 from the drop-down next to
Platform Target. This step is required whenever referencing a library built on the x64
platform, such as the Revit API:

Next, click on the Debug tab and activate the ‘Start External Program’ radio button.
Click on the square browse button next to the input field, and browse to your Revit root
folder (typically this is C:\Program Files\Autodesk\Revit 2018) and locate/select the
Revit.exe file. Click OK to select it and assign it to the external program setting:

1.5 and 2.3 - Become a Dynamo Zero Touch Node Developer
in 75 Minutes

Thomas Mahon, Bimorph

Page 10 of 59

To ensure Revit launches when we run the application, click on the Tools tab > Options.
In the Options dialog, expand the Debugging tab and click on General. Find ‘Use
Managed Combability Mode’ and ensure it is checked:

1.5 and 2.3 - Become a Dynamo Zero Touch Node Developer
in 75 Minutes

Thomas Mahon, Bimorph

Page 11 of 59

Click on Tools > Options > Project Solutions > Build and Run, ensure ‘Always build’ option
is selected from the drop-down under ‘On Run, when projects are out of date’:

Step 2 Configure .csproj File
To complete the configuration the .csproj file requires some additional instructions to
automate the creation of the folders and copying of the files required to package our
Zero Touch nodes in Dynamo’s root package directory so they appear in the library. This
avoids the need to either manually copy over our new library to this location, or use the
more laborious ‘Add library’ feature in Dynamo every time the project is compiled. First,
right-click on the ZeroTouchNodes solution file in the Solution Explorer, and click Unload
Project:

1.5 and 2.3 - Become a Dynamo Zero Touch Node Developer
in 75 Minutes

Thomas Mahon, Bimorph

Page 12 of 59

Next, right-click the ZeroTouchNodes solution file in the Solution Explorer again, and click
on Edit ZeroTouchNodes.csproj from the drop-down menu. The csproj file will be
displayed. Scroll down to the bottom of the file and copy and paste the XML below
before the closing </project> tab:

<Target Name="AfterBuild">
 <!--Copy the package to the Dynamo package root directory-->
 <GetReferenceAssemblyPaths TargetFrameworkMoniker=".NETFramework, Version=v2.0">
 <Output TaskParameter="FullFrameworkReferenceAssemblyPaths"
PropertyName="FrameworkAssembliesPath" />
 </GetReferenceAssemblyPaths>
 <GetAssemblyIdentity AssemblyFiles="$(OutDir)$(TargetName).dll">
 <Output TaskParameter="Assemblies" ItemName="AssemblyInfo" />
 </GetAssemblyIdentity>
 <ItemGroup>
 <SourceDlls Include="$(TargetDir)*.dll" />
 <SourcePdbs Include="$(TargetDir)*.pdb" />
 <SourcePdbs Include="$(TargetDir)*.pdb" />
 <SourceXmls Include="$(TargetDir)*.xml" />
 <SourcePkg Include="pkg.json" />
 </ItemGroup>
 <RemoveDir Directories="$(AppData)\Dynamo\Dynamo Revit\2.0\packages\$(ProjectName)\bin" />
 <Copy SourceFiles="@(SourceDlls)" DestinationFolder="$(AppData)\Dynamo\Dynamo
Revit\2.0\packages\$(ProjectName)\bin\%(RecursiveDir)" />
 <Copy SourceFiles="@(SourcePkg)" DestinationFolder="$(AppData)\Dynamo\Dynamo
Revit\2.0\packages\$(ProjectName)\" />
 <Copy SourceFiles="@(SourcePdbs)" DestinationFolder="$(AppData)\Dynamo\Dynamo
Revit\2.0\packages\$(ProjectName)\bin\" />

1.5 and 2.3 - Become a Dynamo Zero Touch Node Developer
in 75 Minutes

Thomas Mahon, Bimorph

Page 13 of 59

 <Copy SourceFiles="@(SourceXmls)" DestinationFolder="$(AppData)\Dynamo\Dynamo
Revit\2.0\packages\$(ProjectName)\bin\" />
</Target>

The code snippet automates the creation of the folders Dynamo requires all custom
node packages include (bin, dyf and extra), as well as the copying all dll, pdb, xml and
json files found in the bin folder of the ZeroTouchNodes project to the Dynamo root
package folder whenever we compile. It targets Dynamo v2.0, however any version
can be targeted by changing the version number in the directory addresses to the
version you have installed.

Save the change by clicking on the save icon and re-open the solution by right-clicking
on the project in the Solution Explorer, and select Reload Project:

1.5 and 2.3 - Become a Dynamo Zero Touch Node Developer
in 75 Minutes

Thomas Mahon, Bimorph

Page 14 of 59

Step 3 Create Custom Package JSON
Now the configuration of our ZeroTouchNode project is complete in Visual Studio, we
need to create a JSON file to accompany the folders and files copied to Dynamo’s
root package directory. Dynamo relies on this JSON file to provide details about the
package and point to any libraries which the package utilises; in our case, it’s the
ZeroTouchNode library we are in the process of writing.

The JSON file can be created from a new text file (txt). Copy the JSON code below and
paste it into the text file using any text editor. It includes all the attributes Dynamo
requires for custom packages, including the reference to our new ZeroTouchNodes
library in the node_libraries in the root folder of the ZeroTouchNodes Visual Studio
project and copy/paste the code shown below. Rename the extension of the file to
json and ignore any Windows warning about changing file extensions.

The ZeroTouchNodes package will comprise a single dll named ZeroTouchNodes and
the node_libraries property of the json file must point to this file otherwise Dynamo will
not load the dll and no nodes will appear in the library:

1.5 and 2.3 - Become a Dynamo Zero Touch Node Developer
in 75 Minutes

Thomas Mahon, Bimorph

Page 15 of 59

{
 "license": "MIT",
 "file_hash": null,
 "name": "ZeroTouchNodes",
 "version": "1.0.0",
 "description": "A collection of Zero Touch Dynamo nodes.",
 "group": "",
 "keywords": ["ZeroTouch", "dynamo"],
 "dependencies": [],
 "contents": "Zero Touch Nodes - A collection of simple Zero Touch Nodes Dynamo nodes.",
 "engine_version": "1.0.0",
 "engine": "dynamo",
 "engine_metadata": "",
 "site_url": "",
 "repository_url": "",
 "contains_binaries": true,
 "node_libraries": [
 "ZeroTouchNodes, Version=1.0.0, Culture=neutral, PublicKeyToken=null"]
}

For convenience, add the json file to the Visual Studio project so edits can easily be
made. To do this, right-click on the ZeroTouchNodes solution file in the Solution Explorer,
and click Add > Existing Item, (ensure all file types is select from the browse window file
types drop-down) then selection and open the JSON file:

1.5 and 2.3 - Become a Dynamo Zero Touch Node Developer
in 75 Minutes

Thomas Mahon, Bimorph

Page 16 of 59

The environment configuration of the project is complete. Now it is time to start creating
new custom nodes. In the next step, we look at creating new constructors, methods
and properties of the HelloWorld class.

1.5 and 2.3 - Become a Dynamo Zero Touch Node Developer
in 75 Minutes

Thomas Mahon, Bimorph

Page 17 of 59

3. KEY C# CONCEPTS
C# Syntax Introduction
Before we begin writing our first custom Zero Touch node, it is important to understand
the basics of C# syntax, the architecture of a simple program (in this case, the
‘program’ is our custom nodes) and key C# concepts as this will make writing our nodes
in the next few exercises easy to follow and understand.

Note that the explanations and concepts introduced throughout this document are
orientated specifically for introductory-level custom node development; details which
are not relevant (but important to know) have therefore been omitted. Delegates are
therefore encouraged to continue developing their understanding of C# concepts
following the lab.

Let’s start with some basics syntax concepts, (referenced from
https://docs.microsoft.com):

1. Value and reference types
Variables that are based on value types directly contain values (the memory
address stores the value). Assigning one value type variable to another copies
the contained value.

This differs from the assignment of reference type variables, which copies a
reference to the object but not the object itself (a reference to the object, and
the object itself, are both allocated memory addresses).

a. Example value types: bool, int (integer), double (decimal number)
b. Example reference type: HelloWorld

Further reading: Research the memory ‘heap’ and ‘stack’ to understand how
value and reference types are stored and accessed.

2. Keywords
Keywords are predefined, reserved identifiers that have special meanings to the
compiler. They cannot be used as identifiers in your program. Fortunately, Visual
Studio will highlight keywords to aid you as you write code to avoid any potential

1.5 and 2.3 - Become a Dynamo Zero Touch Node Developer
in 75 Minutes

Thomas Mahon, Bimorph

Page 18 of 59

conflicts. To see the list of keywords, visit https://docs.microsoft.com/en-
us/dotnet/csharp/language-reference/keywords/.

3. Modifiers
Modifiers are used to modify declarations of types and type members. Zero touch
node development typically requires the use of the static modifier if your class
returns objects different from its own type. In most cases, it’s the only modifier
(excluding Access Modifiers) you’ll need to use.

4. Access Modifiers (aka Access Specifiers)
Access modifiers are keywords used to specify the declared accessibility of a
member or a type. The accessibility levels in C# are: public, private, internal,
protected, protected internal and private protected. For the purposes of the
lab we will only use 2:

a. Public – Access is not restricted. You can call public members or types
anywhere in your program. So can any external application, i.e. Dynamo

b. Private – Access is limited to the containing type. You can only call
members or types within their scope (typically the class). External
applications cannot access nor call private members or types.

5. Statements

The actions that a program takes are expressed in statements. Common actions
include declaring variables, assigning values, calling methods, looping through
collections, and branching to one or another block of code, depending on a
given condition. The order in which statements are executed in a program is

1.5 and 2.3 - Become a Dynamo Zero Touch Node Developer
in 75 Minutes

Thomas Mahon, Bimorph

Page 19 of 59

called the flow of control or flow of execution. The flow of control may vary every
time that a program is run, depending on how the program reacts to input that it
receives at run time.

A statement can consist of a single line of code that ends in a semicolon, or a
series of single-line statements in a block. A statement block in C# is enclosed in {}
brackets and can contain nested blocks. The following code shows two
examples of single-line statements, and a multi-line statement block:

static void Main()
{
 // Declaration statement.
 int counter;

 // Assignment statement.
 counter = 1;

 // Error! This is an expression, not an expression statement.
 // counter + 1;

 // Declaration statements with initializers are functionally
 // equivalent to declaration statement followed by assignment statement:
 int[] radii = { 15, 32, 108, 74, 9 }; // Declare and initialize an array.
 const double pi = 3.14159; // Declare and initialize constant.

 // foreach statement block that contains multiple statements.
 foreach (int radius in radii)
 {
 // Declaration statement with initializer.
 double circumference = pi * (2 * radius);

 // Expression statement (method invocation). A single‐line
 // statement can span multiple text lines because line breaks
 // are treated as white space, which is ignored by the compiler.
 System.Console.WriteLine("Radius of circle #{0} is {1}. Circumference = {2:N2}",
 counter, radius, circumference);

 // Expression statement (postfix increment).
 counter++;

 } // End of foreach statement block
} // End of Main method body.

6. Using directive

The using directive has three uses:

a. To allow the use of types in a namespace so that you do not have to
qualify the use of a type in that namespace:
using Autodesk.Revit.DB;

1.5 and 2.3 - Become a Dynamo Zero Touch Node Developer
in 75 Minutes

Thomas Mahon, Bimorph

Page 20 of 59

b. To allow you to access static members and nested types of a type without
having to qualify the access with the type name:
using static System.Math;

c. To create an alias for a namespace or a type. This is called a using alias

directive:
using ProtoCurve = Autodesk.DesignScript.Geometry.Curve;

The scope of a using directive is limited to the file in which it appears and can
appear:

a. At the beginning of a source code file, before any namespace or type
definitions.

b. In any namespace, but before any namespace or types declared in this
namespace.

Otherwise, you will get a compiler error.

7. Dot operator
The dot operator (.) is used for member access. The dot operator specifies a
member of a type or namespace. For example, the dot operator is used to
access specific methods within the .NET Framework class libraries
Line dynamoLine = Line.ByStartPointEndPoint(startPoint, endPoint);

It is used use to access members of classes (and class instances), such as its
properties:
double lineLength = dynamoLine.Length;

And the dot is used to form qualified names, which are names that specify the
namespace or interface, for example, to which they belong:
Autodesk.Revit.DB.Wall wall = Autodesk.Revit.DB.Wall.Create(document, profile, false);

8. Comments

Always add comments throughout your code to document the purpose of your
program and provide more meaning. All good developers comment their code –
it makes it easier for you and others to comprehend the logic, flow and structure
of your program. The C# compiler ignores comments, so you can include them
anywhere in your program without any adverse effects.

1.5 and 2.3 - Become a Dynamo Zero Touch Node Developer
in 75 Minutes

Thomas Mahon, Bimorph

Page 21 of 59

To create a single-line comment, use a double forward-slash:
double lineLength = dynamoLine.Length; //Get the total length of the ProtoGeometry Line

A multi-line comment can be achieved by containing the text within and forward
slash and asterisk /* and terminates with an asterisk and forward slash:
/*Get the total length of the ProtoGeometry Line
The length is measured in mm*/
double lineLength = dynamoLine.Length;

Components of a Simple Program
Programs written in C# are structured into hierarchal structures that comprise a library,
which is organised into namespaces, classes, and class members. Class members
include (but are not limited to) constructors, fields, properties and methods. Custom
nodes written in C# conform to these same hierarchies.

1. Namespace
A namespace is essentially a container with a meaningful name which the
developer can use to add more legibility and structure to their program by grouping
related classes together. For example, our project includes a namespace called
ZeroTouchNodes, and within this namespace, the HelloWorld class is declared.

Namespace declaration comprises the namespace keyword followed by a name of
your choice – e.g. ZeroTouchNodes. Following the rules of C# syntax, we use open
‘{‘ and closed ‘}’ curly brackets to define the scope of the namespace:

namespace ZeroTouchNodes
{

}

2. Class
Classes are one of the basic constructs of the common type system in the .NET
Framework. It is essentially a data structure that encapsulates a set of data and
behaviours that belong together as a logical unit. The data and behaviours are the
members of the class, and they include its methods, properties, and events, and so
on.

1.5 and 2.3 - Become a Dynamo Zero Touch Node Developer
in 75 Minutes

Thomas Mahon, Bimorph

Page 22 of 59

A class declaration is like a blueprint that is used to create instances or objects at run
time. If you define a class called HelloWorld, HelloWorld is the name of the type.
Multiple instances of the same HelloWorld type can be created, and each instance
can have different values in its properties and fields.

A class is a reference type. When an object of the class is created, the variable to
which the object is assigned holds only a reference to that memory. When the
object reference is assigned to a new variable, the new variable refers to the
original object. Changes made through one variable are reflected in the other
variable because they both refer to the same data.

At run time, when you declare a variable of a reference type, the variable contains
the value null until you explicitly create an instance of the class by using the new
operator, or assign it an object of a compatible type that may have been created
elsewhere.

a. Declaring a Class

Classes are declared by using the class keyword followed by a unique
identifier as shown in the following example.

Tip: your classes (i.e. your custom nodes) should use the public access
modifier if they need to appear in the Dynamo node library after Zero Touch
import.
public class HelloWorld
{

}

The class keyword is preceded by the access level. Because public is used in
this case, anyone can create instances of this class. The name of the class
follows the class keyword. The name of the class must be a valid C# identifier
name. The remainder of the definition is the class body between the open ‘{‘
and closed ‘}’ curly brackets, where the behaviour and data are defined.
Fields, properties, methods, and events on a class are collectively referred to
as class members.

1.5 and 2.3 - Become a Dynamo Zero Touch Node Developer
in 75 Minutes

Thomas Mahon, Bimorph

Page 23 of 59

b. Creating Objects
Although they are sometimes used interchangeably, a class and an object
are different things. A class defines a type of object, but it is not an object
itself. An object is a concrete entity based on a class, and is sometimes
referred to as an instance of a class.

Objects can be created by using the new keyword followed by the name of
the class that the object will be based on, like this:
HelloWorld hello = new HelloWorld("Hello BILT Euro 2018");

3. Constructor
Whenever a class is created, its constructor is called. A class may have multiple
constructors that take different arguments. Constructors enable the programmer to
set default values, limit instantiation, and write code that is flexible and easy to read.

a. Default Constructors
If you don't provide a constructor for your class, C# creates one by default
that instantiates the object and sets member variables to the default values
as listed in the Default Values Table.

Tip: Zero Touch import will convert default constructors into a node visible in
the Dynamo library. To prevent this, you should always declare a default
constructor explicitly and change its access level to private:
namespace ZeroTouchNodes
{
 public class HelloWorld
 {
 //Default constructor set to private
 private HelloWorld() { }
 }
}

b. Constructor syntax

A constructor is a method whose name is the same as the name of its type. Its
method signature includes only the method name and its parameter list ,
which is always encased in curved brackets; it does not include a return type.
The following example shows the constructor for our HelloWorld class:
namespace ZeroTouchNodes
{
 public class HelloWorld

1.5 and 2.3 - Become a Dynamo Zero Touch Node Developer
in 75 Minutes

Thomas Mahon, Bimorph

Page 24 of 59

 {
 private string message;

//HelloWorld constructor
 public HelloWorld(string myMessage)
 {
 message = myMessage;
 }
 }
}

4. Fields, Properties and Methods
Classes can also include fields, properties and methods. Fields are variables used to
store values relevant to a class instance. Properties are used to access a class
instances fields and either get (return) or set its values. Methods are declared with a
return type (or use the void keyword if they do not) and include statements which
perform a procedure relevant to the class. In the following exercises, we explore
fields, properties and methods, their implementation and how they are used.

namespace ZeroTouchNodes
{
 public class HelloWorld
 {
 //HelloWorld field
 private string message;
 private int length;

 //Property which
 public int Length
 {
 get
 {
 return length;
 }
 }

 //A constructor ‐ 'creates' and instance of HelloWorld class
 public HelloWorld(string myMessage)
 {
 message = myMessage;
 length = myMessage.Length;
 }

 //A method (And member of) MyClass
 public static string Concatenate(HelloWorld helloWorld, string otherMessage)
 {
 return helloWorld.message + " " + otherMessage;
 }
 }
}

1.5 and 2.3 - Become a Dynamo Zero Touch Node Developer
in 75 Minutes

Thomas Mahon, Bimorph

Page 25 of 59

Syntax of a Method
The following diagram summarizes the basic syntax structure of a method. Dynamo Zero
Touch import will convert public class members, which include methods, into nodes.
The modifiers are both optional; without any access modifier for example, the method is
set to private by default. In cases where the method doesn’t return anything, replace
the return type with the void keyword:

`

public static string Concatenate(HelloWorld helloWorld, string otherMessage)
{

return helloWorld.message + " " + otherMessage;
}

Access
Modifier

Modifier Return
type

Method
name

Input
parameters

Statement
body

+ = Method
signature

1.5 and 2.3 - Become a Dynamo Zero Touch Node Developer
in 75 Minutes

Thomas Mahon, Bimorph

Page 26 of 59

4. WRITING CUSTOM NODES – THE BASICS
HelloWorld Custom Nodes
Now the basics concepts are understood, its time to begin practically applying this
knowledge to develop our HelloWorld class nodes. We are going to create a default
constructor, add new members to our class, and compile our program (i.e. our custom
nodes) to begin testing it.

Create a Constructor
The first step involves creating a default constructor. Applying the concepts learned in
the previous section, we need to ensure our class is public so it displays in the Dynamo
library after Zero Touch import, and we need to declare a default constructor following
the syntax, so our program should look like this once these steps are complete:
namespace ZeroTouchNodes
{
 public class HelloWorld
 {
 public HelloWorld()
 {

 }
 }
}

Compile the Solution and Test the Node
We’ve just written a basic program. Now lets compile our code into a library (which is
output as a dll file – a ‘Dynamically Linked Library’) and test the results in Dynamo. To do
this, simply click the start button in visual studio to begin the compile process and Revit
will automatically launch so we can begin testing. Note that the solution can also be
compiled using Build tab > Build Solution (or Rebuild Solution) if you don’t want to test in
debug mode.

Note that as we’ve already configured our environment to export the library files and
custom node JSON file to the Dynamo root package folder, there are no intermediate
steps involved; our nodes should automatically appear in Dynamo’s node library.

1.5 and 2.3 - Become a Dynamo Zero Touch Node Developer
in 75 Minutes

Thomas Mahon, Bimorph

Page 27 of 59

Launch Dynamo (v2.0 since this is our target platform) and our ZeroTouchNode and
place our new HelloWorld node on the graph:

1.5 and 2.3 - Become a Dynamo Zero Touch Node Developer
in 75 Minutes

Thomas Mahon, Bimorph

Page 28 of 59

You will see that our HelloWorld class constructor node is correctly returning an
instance of the HelloWorld class. However, right now it is not doing much and serves no
purpose. In the next step we will look at developing the constructors method signature
and create fields and properties in our class to store the values.

Add Constructor Inputs, Fields and Properties
To add more functionality to our HelloWorld class, we will now add an input to the
constructor enabling a message to be input as a string (text). To do this we need to
enter the input type followed by a name within the curved brackets of the constructor
declaration. C# is strong-typed language, so variable are always preceded by their
type. Add the input using the name message:

namespace ZeroTouchNodes
{
 public class HelloWorld
 {
 public HelloWorld(string message)
 {

 }
 }
}

Now the input is declared, the next consideration is what should happen with the
message once its input. If we leave the constructor in its current state, the message
does nothing as we haven’t told the compiler what to do with it.

This is where we can add a field to our class to store the input message value. We can
then access the value stored in the field whenever required using the ‘.’ (dot) operator.
Declare a new field above the constructor called _message. As this field is storing our
message, the type of this field must match, so precede the name with string to define
its type.

We also want to control its access level; typically fields are always set to private
following C# encapsulation standards, and our program will also adhere to this
principle. Our code should look like this once complete:

namespace ZeroTouchNodes
{
 public class HelloWorld
 {

1.5 and 2.3 - Become a Dynamo Zero Touch Node Developer
in 75 Minutes

Thomas Mahon, Bimorph

Page 29 of 59

 private string _message;

 public HelloWorld(string message)
 {

 }
 }
}

Next, we need to assign the message that’s input into the constructor to the _message
field. To do this we have to specify it in the statement body of our constructor using the
‘=’ (assignment) operator as shown below:
namespace ZeroTouchNodes
{
 public class HelloWorld
 {
 private string _message;

 public HelloWorld(string message)
 {
 _message = message;
 }
 }
}

The final step involves creating a public property so the field value is accessible at
every level, and crucially, shows as a node in the Dynamo library. Properties use the get
and set keywords and adhere to the following syntax:
namespace ZeroTouchNodes
{
 public class HelloWorld
 {
 private string _message;

 public string Message
 {
 get { return _message; }
 set { message = value; }
 }

 public HelloWorld(string message)
 {
 _message = message;
 }
 }
}

Tip: properties can implement one or the other to restrict modification (set) or access
(get) to the field; just omit the one you don’t need. E.g.
public string Message
{
 get { return _message; }
}

1.5 and 2.3 - Become a Dynamo Zero Touch Node Developer
in 75 Minutes

Thomas Mahon, Bimorph

Page 30 of 59

Once these steps are complete, compile the solution again and test the nodes in
Dynamo. If successful, you should now see two nodes in the library and our HelloWorld
constructor will include a string input called message:

Add a Method to the Class
To compete the exercise, we will now add a new public method to our HelloWorld
class which can be used to query if a character or word appears in the message of a
HelloWorld instance, returning true if the query is found, or false if it’s not.

Methods require a return type and optional modifiers. Since our method is querying the
message value for a substring, the return type is either true or false which are values of
the bool type. Hence, the return type of our method is bool.

Now we have established the method signature, declare the method within our class
with the name Contains() and precede the name with the return type bool.
namespace ZeroTouchNodes
{
 public class HelloWorld
 {
 private string _message;

1.5 and 2.3 - Become a Dynamo Zero Touch Node Developer
in 75 Minutes

Thomas Mahon, Bimorph

Page 31 of 59

 public string Message
 {
 get { return _message; }
 set { message = value; }
 }

 public HelloWorld(string message)
 {
 _message = message;
 }

 bool Contains()
 {

 }
 }
}

If the access level of the method (or any member of class, or a class itself) is not
specified, its set to private by default. Since we want the method to show as a node in
our library after Zero Touch import, we need to declare the access level as public.

The method also requires a string input – the query string – so create an input the
method called substring preceded by string as the type. You method should now look
like this:
namespace ZeroTouchNodes
{
 public class HelloWorld
 {
 private string _message;

 public string Message
 {
 get { return _message; }
 set { message = value; }
 }

 public HelloWorld(string message)
 {
 _message = message;
 }

 public bool Contains(string subString)
 {

 }
 }
}

Next, we need to write the instructions in our method to perform the query action we
require. These instructions are declared within the statement body of the method
(within the two curly brackets below the method signature).

1.5 and 2.3 - Become a Dynamo Zero Touch Node Developer
in 75 Minutes

Thomas Mahon, Bimorph

Page 32 of 59

Since we are returning a bool value, we can declare a new bool variable, perform the
query on the HelloWorld Message property, then return the result. Declare a new bool
value called contains adhering to the same syntax rules we’ve already used in the
previous steps.

We are going to assign the result of the query to this value. We use = operator for
assignment and it’s the Message property we are querying, so we need to write the
following line in our method:
namespace ZeroTouchNodes
{
 public class HelloWorld
 {
 //HelloWorld field
 private string _message;

 //HelloWorld property
 public string Message
 {
 get { return _message; }
 set { _message = value; }
 }

 //HelloWorld constructor
 public HelloWorld(string message)
 {
 _message = message;
 }

 public bool Contains(string subString)
 {
 bool contains = Message
 }
 }
}

To perform the query we can utilise the Contains method from the .NET Common
Runtime Language (which returns a bool value) using the ‘.’ (dot) operator on the
Message property. The dot operator will display the IntelliSense list where we can
browse all the methods which can be called on the object the dot is used on. Locate
the Contains method and double click it to add it into your method:

1.5 and 2.3 - Become a Dynamo Zero Touch Node Developer
in 75 Minutes

Thomas Mahon, Bimorph

Page 33 of 59

To complete this step, we need to input a string into the .NET Contains method. This
string is the same string input into our method, so pass subString into the curved brackets
of the method. Remember, in C#, statements terminate with a semi-colon:
namespace ZeroTouchNodes
{
 public class HelloWorld
 {
 //HelloWorld field
 private string _message;

 //HelloWorld property
 public string Message
 {
 get { return _message; }
 set { _message = value; }
 }

 //HelloWorld constructor
 public HelloWorld(string message)
 {
 _message = message;
 }

 public bool Contains(string subString)
 {
 bool contains = Message.Contains(substring);
 }
 }
}

1.5 and 2.3 - Become a Dynamo Zero Touch Node Developer
in 75 Minutes

Thomas Mahon, Bimorph

Page 34 of 59

Finally, our method needs to return the result of the query, otherwise the query executes
with the result we need but will be disposed (removed from memory) after execution
which isn’t very useful, as we need the result! Instead we can use the return statement
which outputs/returns a value or reference type from a method. Therefore, we need to
insert the return statement. The syntax is always return followed by the name of value
or reference to output; in our case, it’s the contains value:
namespace ZeroTouchNodes
{
 public class HelloWorld
 {
 //HelloWorld field
 private string _message;

 //HelloWorld property
 public string Message
 {
 get { return _message; }
 set { _message = value; }
 }

 //HelloWorld constructor
 public HelloWorld(string message)
 {
 _message = message;
 }

 //HelloWorld method
 public bool Contains(string subString)
 {
 bool contains = Message.Contains(subString);

 return contains;
 }
 }
}

Recompile the solution and test the result in Dynamo. You should see three nodes in the
ZeroTouchNodes library. If the new Contains method has been developed correctly,
you will see two inputs; one for a HelloWorld instance to query, and a another for the
string with which to search. The output from the node should be either true or false:

1.5 and 2.3 - Become a Dynamo Zero Touch Node Developer
in 75 Minutes

Thomas Mahon, Bimorph

Page 35 of 59

Tip: Do not create custom Zero Touch nodes if the same functionality already exists with
a single, or combination of, out-of-the-box nodes. Dynamo already includes a OOTB
node called String.Contains for example, and the HellowWorld.Message property can
be used to provide the input for this node (i.e. a combination of nodes achieves the
same end-goal). The reason then for adding a method called Contains to our
HelloWorld class is purely for the educational purposes of the lab – otherwise, don’t do
it!

Zero Touch Import – How Dynamo Consumes your Library
We’ve successfully completed the creation of our first set of custom Zero Touch nodes.
The way our program (i.e. our custom nodes) is consumed by Dynamo during Zero
Touch import should now be clear. To summarise:

1.5 and 2.3 - Become a Dynamo Zero Touch Node Developer
in 75 Minutes

Thomas Mahon, Bimorph

Page 36 of 59

namespace ZeroTouchNodes
{
 public class HelloWorld
 {
 private string _message;

 public string Message
 {
 get { return _message; }
 set { _message = value; }
 }

 public HelloWorld(string message)
 {
 _message = message;
 }

 public bool Contains(string subString)
 {
 bool contains = Message.Contains(subString);

 return contains;
 }
 }
}

Library names (dll files) appear as package
header in the Dynamo node library

Namespace and class names appear as
sub-categories in the Dynamo node library

Properties appear as ‘Query’
nodes in the Dynamo node library

Constructors appear as ‘Create’
nodes in the Dynamo node library

Methods appear as ‘Action’
nodes in the Dynamo node library

1.5 and 2.3 - Become a Dynamo Zero Touch Node Developer
in 75 Minutes

Thomas Mahon, Bimorph

Page 37 of 59

5. WRITING CUSTOM NODES WITH THE REVIT API
Create Revit Elements Programmatically
In the final exercise, we are going to create a new class named RevitWall which
includes a simple method that programmatically creates a new wall element using the
Revit API. While the inputs and output of this method is not particularly useful, the
purpose of this exercise is to convey the steps needed to implement the Revit API and
output Dynamo-compatible elements from our custom nodes. These steps can be
applied to create, modify or even delete any element type found in Revit.

Create the Wall Class
The first step involves creating a new class in the project. To achieve this, right-click the
solution name in the Solution Explorer, and select Add > New File:

In the dialog box that opens, select Class from the menu and Name it RevitWall.cs.
Click the Add button to add the new class to the project:

1.5 and 2.3 - Become a Dynamo Zero Touch Node Developer
in 75 Minutes

Thomas Mahon, Bimorph

Page 38 of 59

Once the RevitWall class is added to the project, ensure its access level is declared as
public so it is visible in the Dynamo node library after Zero Touch import.

Add a Reference to the Revit API
To be able to make calls to the Revit API (or any external library) we need to take two
actions. The first involves adding it as a reference in our project. To do this, right-click on
References in the Solution Explorer panel and select Add Reference. Using the dialog
box that opens, browse to your installation location of Revit (typically: C:\Program
Files\Autodesk\Revit 2018) and locate the file RevitAPI.dll. Once located, select it and
Click the Add button followed by the OK button to add it to your project:

1.5 and 2.3 - Become a Dynamo Zero Touch Node Developer
in 75 Minutes

Thomas Mahon, Bimorph

Page 39 of 59

The second involves declaring the using directive so we don’t need to fully qualify the
API calls (i.e. declare the namespace to access the class). Following the guidance from
Section 3, add the using directive at the top of the RevitWall class document followed
by Autodesk.Revit.DB to use the primary namespace in the Revit API:

1.5 and 2.3 - Become a Dynamo Zero Touch Node Developer
in 75 Minutes

Thomas Mahon, Bimorph

Page 40 of 59

To avoid copying all the Revit API dll’s into your project when you compile, click the
RevitAPI listing from the References list in the Solution Explorer and set the ‘Copy Local’
property in the Properties dialog to False:

Create a Default Constructor
Create a default constructor and set its access level to private to prevent any
unwanted nodes from appearing in the node library:

1.5 and 2.3 - Become a Dynamo Zero Touch Node Developer
in 75 Minutes

Thomas Mahon, Bimorph

Page 41 of 59

Declare the new Method
Declare a new method in the Wall class called Create() with a public access modifier.
Next, we need to establish the methods return type. An effective way to do this is to
open Revit, create an element of the type we are looking to create (i.e. a
Autodesk.Revit.BD.Wall) and use Revit Lookup to interrogate its properties and type.

Start by manually creating a wall in Revit, select it, and click Add-Ins tab > Revit Lookup
> Snoop Current Selection:

1.5 and 2.3 - Become a Dynamo Zero Touch Node Developer
in 75 Minutes

Thomas Mahon, Bimorph

Page 42 of 59

A dialog appears which enables detailed interrogation of the element. We simply want
to know its class, which is listed at the top of the hierarchy tree on the left side of the
dialog – in this case, it’s the Revit API Wall class:

1.5 and 2.3 - Become a Dynamo Zero Touch Node Developer
in 75 Minutes

Thomas Mahon, Bimorph

Page 43 of 59

Now the class – or rather, the return type of the method – is identified, we can
complete the method signature declaration. Our code should look like this:

namespace ZeroTouchNodes
{
 public class RevitWall
 {
 private RevitWall() { }

 public Wall Create()
 {

 }
 }
}

Identify the Revit API Call
Revit Lookup has also provided us with a line of enquiry for finding an appropriate Wall
constructor in the Revit API. To begin exploring the API, double click the RevitAPI listed
under References in the Solution Explorer. The Object Browser panel will display; find
and expand the RevitAPI library, then locate and expand its Autodesk.Revit.DB
namespace. You are now looking at the Revit API:

1.5 and 2.3 - Become a Dynamo Zero Touch Node Developer
in 75 Minutes

Thomas Mahon, Bimorph

Page 44 of 59

Locate the Wall class from this namespace and click it to displays its members in the
central dialog box:

We can see that there are a number of overloaded wall constructors; for the purposes
of the lab, we are going to use the simplest method, which takes a document, curve,
level Id, and boolean:

Create(Autodesk.Revit.DB.Document document, Autodesk.Revit.DB.Curve curve, Autodesk.Revit.DB.ElementId levelId,
bool structural)

Add the constructor to your method and assign it to a new variable named newWall
adhering to C# syntax grammar. A convenient way of implementing a method from
the API is to copy/paste its name and signature from the description box directly into
your code then update its inputs accordingly:
namespace ZeroTouchNodes
{
 public class RevitWall
 {
 private RevitWall() { }

 public Wall Create()
 {
 Wall newWall = Wall.Create(Autodesk.Revit.DB.Document document, Autodesk.Revit.DB.Curve
curve, Autodesk.Revit.DB.ElementId levelId, bool structural);
 }
 }
}

1.5 and 2.3 - Become a Dynamo Zero Touch Node Developer
in 75 Minutes

Thomas Mahon, Bimorph

Page 45 of 59

Tip: The Wall.Create() method is static so it’s called on its type, not an instance, which
means the use of the new keyword is unneeded. Visual Studio will tell you if the method
is static on the first line of the method signature in the description box, enabling you to
determine how to call the member:

Adding Inputs for the Wall Constructor
The next step involves creating variables within the methods scope to satisfy the inputs
for the Wall.Create() method. The first input is an instance of the active Document
object. Conveniently, we can utilise the RevitServices.dll library (which is included with
Dynamo’s install) for Revit interop and instantiation of this object. Start by adding the
library (typically found in C:\Program Files\Dyna\Dynamo Revit\2\Revit_2018) to the
project in the same way we added the RevitAPI.dll.

Add the using directive to the top of your document followed by
RevitServices.Persistence to target the required namespace from this library:

1.5 and 2.3 - Become a Dynamo Zero Touch Node Developer
in 75 Minutes

Thomas Mahon, Bimorph

Page 46 of 59

Create a new variable in our method called doc and use the static DocumentManager
class from RevitServices.dll to instantiate a new Document object. We can update the
first input of the Create() constructor from the API by passing the doc variable into the
first of its inputs:
namespace ZeroTouchNodes
{
 public class RevitWall
 {
 private RevitWall() { }

 public Wall Create()
 {
 Document doc = DocumentManager.Instance.CurrentDBDocument;

 Wall newWall = Wall.Create(doc, Autodesk.Revit.DB.Curve curve, Autodesk.Revit.DB.ElementId
levelId, bool structural);
 }
 }
}

For the next input we need to create a Curve object. For this we will use the Revit API
Line class and its CreateBound() constructor, which takes two XYZ’s (Revit API
points/vectors) as inputs:

CreateBound(Autodesk.Revit.DB.XYZ endpoint1, Autodesk.Revit.DB.XYZ endpoint2)

1.5 and 2.3 - Become a Dynamo Zero Touch Node Developer
in 75 Minutes

Thomas Mahon, Bimorph

Page 47 of 59

Begin by copy/pasting the Line.CreateBound() method signature into your method
and assign it to a new variable called lnLocationCurve. Since it’s a static constructor,
we call it directly on the Line type without the new keyword:
namespace ZeroTouchNodes
{
 public class RevitWall
 {
 private RevitWall() { }

 public Wall Create()
 {
 Document doc = DocumentManager.Instance.CurrentDBDocument;

 Line lnLocationCurve = Line.CreateBound(Autodesk.Revit.DB.XYZ endpoint1,
Autodesk.Revit.DB.XYZ endpoint2);

 Wall newWall = Wall.Create(doc, Autodesk.Revit.DB.Curve curve, Autodesk.Revit.DB.ElementId
levelId, bool structural);
 }
 }
}

We want to be able to control the length of this line (and therefore the length of the
new Wall) as an input to our method. Therefore, we need to add a new input called
lengthInFt of type double.
namespace ZeroTouchNodes
{
 public class RevitWall
 {
 private RevitWall(double lenghtInFt) { }

 public Wall Create()
 {
 Document doc = DocumentManager.Instance.CurrentDBDocument;

 Line lnLocationCurve = Line.CreateBound(Autodesk.Revit.DB.XYZ endpoint1,
Autodesk.Revit.DB.XYZ endpoint2);

 Wall newWall = Wall.Create(doc, Autodesk.Revit.DB.Curve curve, Autodesk.Revit.DB.ElementId
levelId, bool structural);
 }
 }
}

Tip: The Revit API uses decimal feet as its internal units system. This cannot be changed,
so if you prefer working in other unit systems (i.e. metric) or if your inputs are not decimal
feet, you will have to perform the units conversion within your code. It is also worth
mentioning for angles, it uses radians, not degrees.

1.5 and 2.3 - Become a Dynamo Zero Touch Node Developer
in 75 Minutes

Thomas Mahon, Bimorph

Page 48 of 59

To satisfy the inputs for the Line.CreateBound() constructor, create two new XYZ objects
called ptStart and ptEnd above lnLocationCurve. Instantiate the new XYZ’s using the
new keyword, and assign them to these variables. Use the lengthInFt variable as the X
dimension of ptEnd:
namespace ZeroTouchNodes
{
 public class RevitWall
 {
 private RevitWall() { }

 public Wall Create(double lenghtInFt)
 {
 Document doc = DocumentManager.Instance.CurrentDBDocument;

 XYZ ptStart = new XYZ(); //no inputs creates an XYZ at 0,0,0
 XYZ ptEnd = new XYZ(lenghtInFt, 0.0, 0.0);

 Line lnLocationCurve = Line.CreateBound(Autodesk.Revit.DB.XYZ endpoint1,
Autodesk.Revit.DB.XYZ endpoint2);

 Wall newWall = Wall.Create(doc, Autodesk.Revit.DB.Curve curve, Autodesk.Revit.DB.ElementId
levelId, bool structural);
 }
 }
}

Pass the new XYZ’s into the Line.CreateBound() inputs to complete the instantiation of
the new Line object and pass the lnLocationCurve into the Wall.Create() methods
second input:
namespace ZeroTouchNodes
{
 public class RevitWall
 {
 private RevitWall() { }

 public Wall Create(double lenghtInFt)
 {
 Document doc = DocumentManager.Instance.CurrentDBDocument;

 XYZ ptStart = new XYZ(); //no inputs creates an XYZ at 0,0,0
 XYZ ptEnd = new XYZ(lenghtInFt, 0.0, 0.0);

 Line lnLocationCurve = Line.CreateBound(ptStart, ptEnd);

 Wall newWall = Wall.Create(doc, lnLocationCurve, Autodesk.Revit.DB.ElementId levelId, bool
structural);
 }
 }
}

There are two more inputs that need to be satisfied. The final input is not structural, so
we can simply input false as the wall doesn’t need to be structural. For the remaining

1.5 and 2.3 - Become a Dynamo Zero Touch Node Developer
in 75 Minutes

Thomas Mahon, Bimorph

Page 49 of 59

input ‘levelId’ we want this to be an input into our method so the user can provide the
level. However, the ElementId type cannot be used as the type as it is a Revit API type,
none of which are supported by Dynamo. Instead, we can provide the level Id as an
integer value using Dynamo’s Element.Id node, and instantiate the ElementId object
within our method using the integer. Therefore, create a new input called levelId of the
type int:
namespace ZeroTouchNodes
{
 public class RevitWall
 {
 private RevitWall() { }

 public Wall Create(double lenghtInFt, int levelId)
 {
 Document doc = DocumentManager.Instance.CurrentDBDocument;

 XYZ ptStart = new XYZ(); //no inputs creates an XYZ at 0,0,0
 XYZ ptEnd = new XYZ(lenghtInFt, 0.0, 0.0);

 Line lnLocationCurve = Line.CreateBound(ptStart, ptEnd);

 Wall newWall = Wall.Create(doc, lnLocationCurve, Autodesk.Revit.DB.ElementId levelId,
false);
 }
 }
}

To provide the ElementId object, create a new variable of this type called
levelElementId and instantiate it using the new keyword with the ElementId constructor
which takes an int as an input. Input the levelId to the constructor, then pass
levelElementId into the ElementId input of the Wall.Create() method, to satisfy its inputs:
namespace ZeroTouchNodes
{
 public class RevitWall
 {
 private RevitWall() { }

 public Wall Create(double lenghtInFt, int levelId)
 {
 Document doc = DocumentManager.Instance.CurrentDBDocument;

 XYZ ptStart = new XYZ(); //no inputs creates an XYZ at 0,0,0
 XYZ ptEnd = new XYZ(lenghtInFt, 0.0, 0.0);

 Line lnLocationCurve = Line.CreateBound(ptStart, ptEnd);

 ElementId levelElementId = new ElementId(levelId);

 Wall newWall = Wall.Create(doc, lnLocationCurve, levelElementId, false);
 }
 }
}

1.5 and 2.3 - Become a Dynamo Zero Touch Node Developer
in 75 Minutes

Thomas Mahon, Bimorph

Page 50 of 59

Return the Wall Element
To return an object from a method, the return statement is used. The syntax is always
the return keyword followed by the value or object to return with a semi-colon which
ends the statement. In our case, the object to return is the newWall element:
namespace ZeroTouchNodes
{
 public class RevitWall
 {
 private RevitWall() { }

 public Wall Create(double lenghtInFt, int levelId)
 {
 Document doc = DocumentManager.Instance.CurrentDBDocument;

 XYZ ptStart = new XYZ(); //no inputs creates an XYZ at 0,0,0
 XYZ ptEnd = new XYZ(lenghtInFt, 0.0, 0.0);

 Line lnLocationCurve = Line.CreateBound(ptStart, ptEnd);

 ElementId levelElementId = new ElementId(levelId);

 Wall newWall = Wall.Create(doc, lnLocationCurve, levelElementId, false);

 return newWall;
 }
 }
}

Make the Method Static
We need to add the static modifier to our method otherwise it will require an instance
of our RevitWall class before it can be called, which serves no purpose (If the method
is not marked static, then an unnecessary input will appear on the node after Zero
Touch import, requiring a RevitWall instance…and there would be no means to satisfy
this input, as we’ve set the RevitWall constructor to private which means no
RevitWall ‘create’ nodes will display in Dynamo’s node Library):

 Static method Non-static method – requires type instance input

1.5 and 2.3 - Become a Dynamo Zero Touch Node Developer
in 75 Minutes

Thomas Mahon, Bimorph

Page 51 of 59

Modifiers are added immediately after access modifiers, so our method should look like
this once complete:
namespace ZeroTouchNodes
{
 public class RevitWall
 {
 private RevitWall() { }

 public static Wall Create(double lenghtInFt, int levelId)
 {
 Document doc = DocumentManager.Instance.CurrentDBDocument;

 XYZ ptStart = new XYZ(); //no inputs creates an XYZ at 0,0,0
 XYZ ptEnd = new XYZ(lenghtInFt, 0.0, 0.0);

 Line lnLocationCurve = Line.CreateBound(ptStart, ptEnd);

 ElementId levelElementId = new ElementId(levelId);

 Wall newWall = Wall.Create(doc, lnLocationCurve, levelElementId, false);

 return newWall;
 }
 }
}

Add a Transaction
There is an additional step we need to take before we can begin testing our method;
adding a transaction to our method. A transaction is a context required in Revit in order
to make any modifications to a model – this includes the creation or deletion of
elements. Without a transaction in our method, an exception will be throw as we are
attempting to modify the document (i.e. create a new wall).

We can utilise Dynamo’s RevitServices library again to declare the transaction. We use
its static TransactionManager class and use its EnsureInTransaction() method to start
the transaction. The transaction must be closed using the TransactionTaskDone()
method. The modifications to the document must be declared between these two
statements, as shown below:
namespace ZeroTouchNodes
{
 public class RevitWall
 {
 private RevitWall() { }

 public static Wall Create(double lenghtInFt, int levelId)
 {
 Document doc = DocumentManager.Instance.CurrentDBDocument;

1.5 and 2.3 - Become a Dynamo Zero Touch Node Developer
in 75 Minutes

Thomas Mahon, Bimorph

Page 52 of 59

 XYZ ptStart = new XYZ(); //no inputs creates an XYZ at 0,0,0
 XYZ ptEnd = new XYZ(lenghtInFt, 0.0, 0.0);

 Line lnLocationCurve = Line.CreateBound(ptStart, ptEnd);

 ElementId levelElementId = new ElementId(levelId);

 TransactionManager.Instance.EnsureInTransaction(doc);

 Wall newWall = Wall.Create(doc, lnLocationCurve, levelElementId, false);

 TransactionManager.Instance.TransactionTaskDone();

 return newWall;
 }
 }
}

To utilise this class, we also need to add a using directive to point to the namespace
containing the TransactionManager class. Visual Studio can assist us here; simply hover
your cursor over the unknown class and click on ‘Show potential fixes’:

It will suggest adding the required directive, which you can confirm by clicking on the
suggestion:

1.5 and 2.3 - Become a Dynamo Zero Touch Node Developer
in 75 Minutes

Thomas Mahon, Bimorph

Page 53 of 59

Tip: It is possible to use the Revit API’s Transaction class for the same purpose, however
it is recommended to use the TransactionManager class from Dynamo’s RevitServices
library as It saves you the effort of having to dispose your objects (aka garbage
collection), plus it helps to keep both Revit and Dynamo in more consistent states.

Wrap the Wall Element
Before we compile and test, there is an important step we need to take to make the
Revit wall element Dynamo-compatible: we need to wrap it in Dynamo’s
Revit.Elements.Element wrapper class. This library is an interop library which delivers all of
Dynamo’s Revit nodes you see in its node library, as well as helper functions to wrap
and unwrap elements from Revit.

The method we call to ‘wrap’ Revit elements into the Dynamo wrapper class is
ToDSType(). It takes a bool input, where true is used if the element exists in Revit, or
false if the element is being instantiated by our code. In our case, we are creating a
new wall element so we need to input false. The wrapper method is available in
Dynamo’s RevitNodes.dll library. Add the library by right-clicking on References in the
Solution Explorer and locate the library here: C:\Program Files\Dyna\Dynamo
Revit\2\Revit_2018:

1.5 and 2.3 - Become a Dynamo Zero Touch Node Developer
in 75 Minutes

Thomas Mahon, Bimorph

Page 54 of 59

Add the following using directive followed by the target namespace Revit.Elements to
the top of the RevitWall document:

You will notice Visual Studio now displays a warning of an ambiguous reference
between the Revit API Wall class and the Wall class in Dynamo’s Revit.Elements library.
We can resolve this quickly using an alias in our using directives. Aliases provide
convenient shorthand’s for the developer to use in their code to avoid having to fully

1.5 and 2.3 - Become a Dynamo Zero Touch Node Developer
in 75 Minutes

Thomas Mahon, Bimorph

Page 55 of 59

qualify classes and resolve issues such as ambiguous references. The simplest solution is
to add a new alias to our using directives and qualify the intended Wall class – in our
case, it’s the Wall class from the Revit API – with the following syntax:

using Wall = Autodesk.Revit.DB.Wall;

We can now call ToDSType() on our newWall object. For convenience we can call it as
the wall element is returned from the method, as shown below.
namespace ZeroTouchNodes
{
 public class RevitWall
 {
 private RevitWall() { }

 public static Wall Create(double lenghtInFt, int levelId)
 {
 Document doc = DocumentManager.Instance.CurrentDBDocument;

 XYZ ptStart = new XYZ(); //no inputs creates an XYZ at 0,0,0
 XYZ ptEnd = new XYZ(lenghtInFt, 0.0, 0.0);

 Line lnLocationCurve = Line.CreateBound(ptStart, ptEnd);

 ElementId levelElementId = new ElementId(levelId);

 TransactionManager.Instance.EnsureInTransaction(doc);

1.5 and 2.3 - Become a Dynamo Zero Touch Node Developer
in 75 Minutes

Thomas Mahon, Bimorph

Page 56 of 59

 Wall newWall = Wall.Create(doc, lnLocationCurve, levelElementId, false);

 TransactionManager.Instance.TransactionTaskDone();

 return newWall.ToDSType(false);
 }
 }
}

ToDSType() also has another purpose; it creates a binding (known as ‘Element binding’)
between the element created in our code, and its representation in Revit. It essentially
creates a dependency between the node and the Revit element(s) it outputs, to
prevent duplicates – similar to a synchronisation between the two applications. To
illustrate this behaviour; if our method inputs change (eg. length or level changes), the
change modifies the same Wall instance. Without element binding, we would get a
new wall every time the node’s inputs change, or if the Dynamo file is closed/re-
opened and run! It is therefore essential to call ToDSType() on any Revit Element
instantiated in your code to prevent unwanted duplicates from appearing.

Tip: Visit https://github.com/DynamoDS/Dynamo/wiki/Python-0.6.3-to-0.7.x-Migration
for detailed information of Dynamo’s wrapper classes and geometry conversion utilities.
This page is geared towards Python, however the syntax in C# is practically identical –
just adhere to C# syntax rules and there is little else to modify.

Update the Methods Return Type
ToDSType() returns an element from Dynamo’s Revit.Elements.Element class. However,
our method currently returns a Wall class object from the Revit API and you will see a
warning in Visual Studio that it cannot convert between the two types. The final step
then is to update our methods return type. To avoid any ambiguous references with the
Element class in the Revit API, qualify the target class:
namespace ZeroTouchNodes
{
 public class RevitWall
 {
 private RevitWall() { }

 public static Revit.Elements.Element Create(double lenghtInFt, int levelId)
 {
 Document doc = DocumentManager.Instance.CurrentDBDocument;

 XYZ ptStart = new XYZ(); //no inputs creates an XYZ at 0,0,0
 XYZ ptEnd = new XYZ(lenghtInFt, 0.0, 0.0);

1.5 and 2.3 - Become a Dynamo Zero Touch Node Developer
in 75 Minutes

Thomas Mahon, Bimorph

Page 57 of 59

 Line lnLocationCurve = Line.CreateBound(ptStart, ptEnd);

 ElementId levelElementId = new ElementId(levelId);

 TransactionManager.Instance.EnsureInTransaction(doc);

 Wall newWall = Wall.Create(doc, lnLocationCurve, levelElementId, false);

 TransactionManager.Instance.TransactionTaskDone();

 return newWall.ToDSType(false);
 }
 }
}

Compile and Test the Final Solution
We can now test the final solution and check if our ode is working as expected. If you
have completed the exercise successfully, you should see a new wall appear in Revit
after satisfying the RevitWall.Create node’s inputs:

1.5 and 2.3 - Become a Dynamo Zero Touch Node Developer
in 75 Minutes

Thomas Mahon, Bimorph

Page 58 of 59

1.5 and 2.3 - Become a Dynamo Zero Touch Node Developer
in 75 Minutes

Thomas Mahon, Bimorph

Page 59 of 59

6. DO YOU WANT TO LEARN MORE?
Book a Bimorph 2-day Zero Touch Workshop
If you’ve enjoyed this lab and would like to deepen your understanding of C#, the Revit
API and custom node development we provide a range of Dynamo Python and C#
workshops based in London or at your site if booking in groups.

Gain expert knowledge on Dynamo’s Revit wrapper class, element binding, wrapping
and unwrapping, inheritance, garbage collection, interoperability techniques, data
management, custom package creation, its ProtoGeometry, RevitNodes + geometry
conversion libraries, in-depth C# skill development, XML documentation and more.

To enquire and book, visit: https://bimorph.com/dynamo-bim-workshops/

